1. The ad	cute angle	A is such	n that ta	an A = 2.
-----------	------------	-----------	-----------	-----------

i. Find the exact value of cosec A.

[2]

ii. The angle B is such that $\tan (A + B) = 3$. Using an appropriate identity, find the exact value of $\tan B$.

[3]

2. i. Express $4 \cos \theta - 2 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.

[3]

- ii. Hence
 - a. solve the equation $4 \cos \theta 2 \sin \theta = 3$ for $0^{\circ} < \theta < 360^{\circ}$,

[4]

b. determine the greatest and least values of

$$25 - (4 \cos \theta - 2 \sin \theta)^2$$

as θ varies, and, in each case, find the smallest positive value of θ for which that value occurs.

[5]

- 3. Using an appropriate identity in each case, find the possible values of
 - i. $\sin \alpha$ given that $4 \cos 2\alpha = \sin^2 \alpha$,

[3]

ii. $\sec \beta$ given that $2 \tan^2 \beta = 3 + 9 \sec \beta$.

[4]

4. i. Express $5 \cos (\theta - 60^\circ) + 3 \cos\theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$.

[4]

- ii. Hence
 - a. give details of the transformations needed to transform the curve $y = 5 \cos (\theta 60^{\circ}) + 3 \cos \theta$ to the curve $y = \sin \theta$,

[3]

b. find the smallest positive value of β satisfying the equation

$$5\cos(\frac{1}{3}\beta - 40^{\circ}) + 3\cos(\frac{1}{3}\beta + 20^{\circ}) = 3$$

[5]

- It is given that θ is the acute angle such that $\cot \theta = 4$. Without using a calculator, find the exact value of
 - i. $tan(\theta + 45^{\circ})$,

[3]

ii. $cosec \theta$.

[2]

6. i. Show that $\sin 2\theta \tan \theta + \cot \theta = 2$.

[4]

- ii. Hence
 - (a) find the exact value of $\tan \frac{1}{12}\pi + \tan \frac{1}{8}\pi + \cot \frac{1}{12}\pi + \cot \frac{1}{8}\pi$,

[3]

(b) solve the equation $\sin 4\theta (\tan \theta + \cot \theta) = 1$ for $0 < \theta < \frac{1}{2}\pi$,

[3]

(C) express $(1-\cos 2\theta)^2 \left(\tan \frac{1}{2}\theta + \cot \frac{1}{2}\theta\right)^3$ in terms of sin θ .

[2]

7. It is given that A and B are angles such that $\sec^2 A - \tan A = 13$ and $\sin B \sec^2 B = 27 \cos B \csc^2 B$.

Find the possible exact values of tan(A - B).

[8]

- 8. It is given that $f(\theta) = \sin(\theta + 30^\circ) + \cos(\theta + 60^\circ)$.
 - i. Show that $f(\theta) = \cos \theta$. Hence show that

$$f(4\theta) + 4f(2\theta) \equiv 8 \cos^4 \theta - 3.$$

[6]

- ii. Hence
 - a. determine the greatest and least values of $\frac{1}{f(4\theta)+4f(2\theta)+7}$ as θ varies,

[3]

b. solve the equation

$$\sin (12\alpha + 30^\circ) + \cos (12\alpha + 60^\circ) + 4 \sin (6\alpha + 30^\circ) + 4 \cos (6\alpha + 60^\circ) = 1$$

for
$$0^{\circ} < \alpha < 60^{\circ}$$
.

[4]

9. (a) Show that
$$\frac{2\tan\theta}{1+\tan^2\theta} = \sin 2\theta$$
 [3]

(b) In this question you must show detailed reasoning.

Solve
$$\frac{2\tan\theta}{1+\tan^2\theta} = 3\cos 2\theta$$
 for $0 \le \theta \le \pi$. [3]

[3]

[1]

[3]

10. (a) Express $4 \cos \theta + 3 \sin \theta$ in the form $R \cos(\theta - a)$, where R > 0 and $0^{\circ} < a < 90^{\circ}$.

The temperature θ °C of a building at time t hours after midday is modelled using the equation

$$\theta = 20 + 4\cos(15t)^{\circ} + 3\sin(15t)^{\circ}$$
, for $0 \le t < 24$.

- (b) Find the minimum temperature of the building as given by this model.
- (c) Find also the time of day when this minimum temperature occurs.
- 11. In this question you must show detailed reasoning.
 - (a) Solve the equation $\cos^2 x = 0.25$ for $0^\circ \le x < 180^\circ$. [3]

(b) (i)
$$\frac{\cos\theta}{\text{Prove that }} \frac{\cos\theta}{\cos\theta - \sin\theta} - \frac{\cos\theta}{\cos\theta + \sin\theta} \equiv \tan 2\theta.$$
 [3]

(ii) Hence or otherwise solve the equation

$$\frac{\cos \theta}{\cos \theta - \sin \theta} - \frac{\cos \theta}{\cos \theta + \sin \theta} = 1 \quad \text{for } 0^{\circ} \leqslant \theta < 360^{\circ}.$$
 [5]

12.	The angle	A where	90° <	<i>A</i> < 180°	satisfies	the equation
	THE AIRC	U, WITCH	30 \	$U \setminus 100$,	Salisiics	ti io oquation

$$3 \sec^2 \theta + 10 \tan \theta =$$
11.

(i) Find the value of $\tan \theta$.

[3]

(ii) Without using a calculator, determine the value of

(a)
$$\tan 2\theta$$
, [2]

(b)
$$\cot(2\theta + 135^\circ)$$
. **[3]**

13. In this question you must show detailed reasoning.

(a) Use the formula for tan
$$(A - B)$$
 to show that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$

(b) Solve the equation
$$2\sqrt{3}\sin 3A - 2\cos 3A = 1_{\text{for } 0^{\circ} \le A < 180^{\circ}}$$
. [7]

- 14. It is given that the angle θ satisfies the equation $\sin\left(2\theta+\frac{1}{4}\pi\right)=3\cos\left(2\theta+\frac{1}{4}\pi\right)$. (a) Show that $\tan2\theta=\frac{1}{2}$. [3]
 - (b) Hence find, in surd form, the exact value of $tan \theta$, given that θ is an obtuse angle. [5]

15.

(a)
$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$
 [4] By first writing $\tan 3\theta$ as $\tan (2\theta + \theta)$, show that

(b) Hence show that there are always exactly two different values of θ between 0° and 180° which satisfy the equation

$$3 \tan 3\theta = \tan \theta + k$$
,

where k is a non-zero constant.

[5]

- ^{16.} In this question you must show detailed reasoning.
 - (a) Show that $\cos A + \sin A \tan A = \sec A$.

[3]

(b) Solve the equation $\tan 2\theta = 3 \tan \theta$ for $0^{\circ} \le \theta \le 180^{\circ}$.

[7]

END OF QUESTION paper

Mark scheme

Qu	estior	Answer/Indicative content	Marks	Part marks and guidance
1		Either Attempt to find exact value of sin A	M1	using right-angled triangle or identity or
	i	Obtain $\frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv	A1	$\pm \frac{1}{2} \sqrt{5}_{s A0; correct answer only earns M1A1}$
	i	Or Attempt use of identity $1 + \cot^2 A = \csc^2 A$	M1	using $\cot A = \frac{1}{2}$; allow sign error in attempt at identity
				$\pm \frac{1}{2} \sqrt{5}_{s A0; correct answer only earns M1A1}$
				Examiner's Comments
				There were three approaches taken in attempting to find the value
				of cosec A. One was to consider a right-angled triangle with sides
				1, 2 and $\sqrt{5}$ Candidates then had little difficulty in writing down
		1 5		the correct answer. A second approach involved trying to use an
	i	Obtain $\frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or exact equiv	A1	appropriate identity and a successful outcome was not so common. Some candidates evidently knew the relevant identity or
				obtained it by manipulating $\sin^2 A + \cos^2 A = 1$. On some scripts,
				$\cot^2 A + 1 = \csc^2 A$ immediately became $\cot A + 1 = \csc A$.
				Other candidates proposed an incorrect identity linking cosec A
				and tan A. A number of candidates ignored the information about
				A being acute and concluded with cosec $A=\pm \frac{1}{2}\sqrt{5}$ an
				answer that did not earn the second mark. The third approach
				involved resorting to calculators and giving an approximate value;
				no credit was allowed.
		$\frac{2 + \tan B}{1} = 3$	B1	
		State or imply $1-2\tan B$		

	ii	$\frac{\text{linear in } t}{\text{linear in } t} = 3$ Attempt solution of equation of form	M1	Further Trigonometric Identities and Equations by sound process at least as far as $k \tan B = c$
	ii	Obtain $tan B = \frac{1}{7}$	A1	answer must be exact; ignore subsequent attempt to find angle <i>B</i> Examiner's Comments This was answered very well with 80% of candidates earning all three marks. The appropriate identity was quoted and, in most cases, the steps to find the value of tan <i>B</i> were carried out accurately.
		Total	5	
2	i	Obtain $R=\sqrt{20}$ or $R=4.47$	B1	
	i	Attempt to find value of α	M1	implied by correct value or its complement; allow \sin / \cos muddles; allow use of radians for M1; condone use of $\cos \alpha = 4$, $\sin \alpha = 2$ here but not for A1
	i	Obtain 26.6	A1	or greater accuracy 26.565; with no wrong working seen Examiner's Comments This routine piece of work was answered well by most candidates with 73% of them earning the three marks. The fact that the expansion of <i>R</i> cos(θ +α) leads to a minus sign between the two terms confused some candidates and there were sign errors; some candidates concluded with √20cos(θ – 26.565°). A value of 4.47 for R was accepted here but candidates are always advised to choose exact values or values to more than 3 significant figures when further work is dependent on the values.
	ii	(a) Show correct process for finding one answer	M1	allowing for case where the answer is negative
	ii	Obtain 21.3	A1FT	or greater accuracy 21.3045; or anything rounding to 21.3 with no obvious error; following a wrong value of α but not wrong R

© OCR 2017. Page 8 of 31 PhysicsAndMathsTutor.com

lii	Show correct process for finding second answer	M1	ie attempting fourth quadrant value minus a value Further Trigonometric Identities and Equations
			or greater accuracy 285.5653; or anything rounding to 286 with no obvious error; following a wrong value of a but not wrong R ; and no others between 0° and 360° Examiner's Comments
ii	Obtain 286 or 285.6	A1FT	Many candidates had no difficulty in finding the two angles although some earlier lack of accuracy occasionally meant that the two answers were not the correct angles of 21.3° or 286°. Some candidates found the first angle correctly but then wrongly subtracted that answer from 360° to claim a second angle. A few candidates provided four answers, one in each of the four quadrants.
ii	(b) State greatest value is 25	B1	allow if a incorrect
ii	Obtain value 63.4 clearly associated with correct greatest value	B1FT	or greater accuracy 63.4349; following a wrong value of a
ii	State least value is 5	B1	allow if a incorrect
ii	Attempt to find θ from $\cos(\theta + \text{their } \alpha) = -1$	M1	and clearly associated with correct least value
			or greater accuracy 153.4349; following a wrong value of α Examiner's Comments
ii	Obtain 153 or 153.4	A1FT	This proved to be a challenging request and many candidates made little or no significant progress. Some started by expanding $25 - (4\cos\theta - 2\sin\theta)^2$, a step that led into some involved trigonometry but no progress with the particular request. Two quite popular greatest and least values were 21 and 9, obtained by substituting, respectively, $\theta = 90^\circ$ and $\theta = 0^\circ$. Candidates realising that the result from part (i) needed to be used were able to make more progress although some claimed a greatest value of 45; others believing that the required values would be obtained by taking $\cos(\theta + \alpha)$ to be -1 and then $+1$ ended up with greatest

© OCR 2017. Page 9 of 31 PhysicsAndMathsTutor.com

				and least values both being 5. Finding the smallest positive value of θ associated with the two values also proved difficult; in particular the fact that the angle associated with the least value of 5 comes from $\cos(\theta + \alpha) = -1$ eluded many.
		Total	12	
3	i	Use $2 \cos^2 \alpha - 1$ or $\cos^2 \alpha - \sin^2 \alpha$ or $1 - 2 \sin^2 \alpha$	B1	
	i	Obtain equation in which $\sin^2 a$ appears once	M1	condoning sign slips or arithmetic slips; for solution which gives equation involving $\tan^2 \alpha$, M1 is not earned until valid method for reaching $\sin \alpha$ is used; attempt involving $4(1-s^2) = s^2$ is M0
				both values needed; ± 0.667 is A0; $\pm \sqrt{\frac{4}{9}}$ s A0; ignore subsequent work to find angle(s)
				Examiner's Comments
	i	Obtain $\pm \frac{2}{3}$	A1	Most candidates were able to use a correct identity for $\cos 2\alpha$ and to reach an equation such as $9\sin^2\alpha=4$. Many candidates did not conclude successfully. Some gave only the one answer $\sin\alpha=\frac{2}{3}$ and others offered $\sin\alpha=\sqrt{\frac{4}{9}}$ or $\sin\alpha=\pm\sqrt{\frac{4}{9}}$. Going further to find an angle or angles was not penalised in either part of this question.
	ii	Either Attempt use of identity	M1	of form $tan^2\beta = \pm sec^2\beta \pm 1$
	ii	Obtain $2\sec^2\beta - 9\sec\beta - 5 = 0$	A1	condone absence of = 0
	ii	Attempt solution of 3-term quadratic in sec eta to obtain at least one value of sec eta	M1	if factorising, factors must be such that expansion gives their first and third terms; if using formula, this must be correct for their values
	ii	Obtain 5 with no errors in solution	A1	and, finally, no other value; no need to justify rejection of $\frac{1}{2}$

© OCR 2017. Page 10 of 31 PhysicsAndMathsTutor.com

					Examiner's Comments Further Tr	gonometric Identities and Equations
					Some candidates showed uncertainty at the outset but most were able to reach and solve the correct equation involving $\sec \beta$.	
					Many candidates were then content to give the two answers	
					_1	
					2 and 5. No justification for rejecting the former value was required but candidates were expected to make a clear and	
					definite decision as to the value of $\sec \beta$. Some candidates did do	
					a little work considering the possibility of $\cos \beta = -2$ but, often, the	
					impossibility of solving this was not transferred into a final	
					conclusion about the value of $\sec \beta$.	
					Consider about the tailer of edge.	
		ii	Or Attempt to express equation in terms of $\cos \beta$	M1	using identities which are correct apart maybe for sign slips	
		ii	Obtain $5\cos^2\beta + 9\cos\beta - 2 = 0$	A1	condone absence of = 0	
					if factorising, factors must be such that expansion gives their first	
		::	Attempt colution of 2 term quadratic and about quitab at least once to a accept value	N 4 4	and third terms; if using formula, this must be correct for their	
		II	Attempt solution of 3-term quadratic and show switch at least once to a secant value	M1	values and, finally, no other value; no need to justify rejection of	
					$-\frac{1}{2}$	
		ii	Obtain 5 with no errors in solution	A1		
			Total	7		
4		i	Simplify to obtain $\frac{11}{2}\cos\theta + \frac{5\sqrt{3}}{2}\sin\theta$	B1	or equiv with two terms perhaps with sin 60 retained	accept decimal values
		i	Attempt correct process to find R	M1	for expression of form $a\cos\theta + b\sin\theta$	obtained after initial simplification
					for expression of form $a\cos\theta + b\sin\theta$; condone	
		i	Attempt correct process to find a	M1	· · ·	obtained after initial simplification
					$\sin \alpha = \frac{11}{2}, \cos \alpha = \frac{5}{2}\sqrt{3}$	
		i	Obtain 7 sin(θ + 51.8)	A1	or greater accuracy 51.786	
	H	'	- Oblain 1 Onito 1 Onito)	711	or ground accuracy of 17 co	
						SC: if M0 but one transformation
		ii	State stretch and translation in either order	M1	or equiv but using correct terminology, not move, squash,	completely correct, award B1 for 1/3
	1					

© OCR 2017. Page 11 of 31 PhysicsAndMathsTutor.com

lii	State stretch parallel to <i>y</i> -axis with factor $\frac{1}{7}$	A1ft	following their <i>R</i> and clearly indicating correct direction
ii	State translation parallel to θ -axis or x -axis by 51.8 in positive direction or state $ \begin{pmatrix} 51.8 \\ 0 \end{pmatrix} $ translation by vector $ \begin{pmatrix} 0 \\ 0 \end{pmatrix} $	A1ft	following their <i>a</i> and clearly indicating correct direction; or equiv such as 308.2 parallel to <i>x</i> -axis in negative direction
ii	State left-hand side (their R) $\sin(rac{1}{3}oldsymbol{eta}+\gamma)$		
ii	where $\gamma \neq \pm$ (their a), $\gamma \neq \pm 40$, $\gamma \neq \pm 20$,	M1	or equiv such as stating $ heta=rac{1}{3}oldsymbol{eta}+20$
ii	Obtain (their β) $\sin(\frac{1}{3}\beta + \text{their } \alpha + 20) = 3$	A1ft	(and, in this case, allowing A1ft provided value of $\frac{1}{3}oldsymbol{eta}_{ ext{attempted}}$ later)
ii	Attempt correct process to find any value of $rac{1}{3}oldsymbol{eta}$	M1	for equation of form $\sin(\frac{1}{3}\beta + \gamma) = k_{\text{where } \mathcal{K} } < $
ii	Attempt complete process to find positive value of $\boldsymbol{\beta}$	M1	including choosing second quadrant value of their $\sin \sin^{-1} rac{3}{7}$
ii	Obtain 248 or 249 or 248.5	A1	or greater accuracy 248.508 Examiner's Comments The requests in this question will have proved somewhat unfamiliar and it is pleasing to record that 15% of the candidates did rise to the challenges and record all twelve marks. Many candidates did not realise that some initial expansion and
			simplification were needed in part (i) and found R from $R^2 = 5^2 + 3^2$ with the value 30.96° for α following. For those candidates adopting the correct approach, there were some sign errors and the result of their initial simplification was often $\frac{11}{2}\cos\theta - \frac{5}{2}\sqrt{3}$ sin θ . However, 49% of the candidates did reach the correct expression 7 sin $(\theta + 51.8^\circ)$.

				Most candidates recognised that a stretch and a translation	gonometric Identities and Equations
				(although a few did refer to transform when presumably they	
				meant translate) were needed in part (ii)(a) but the care needed to	
				make sure that these were described accurately was not always	
				present. In many cases, the stretch had scale factor 7 and the	
				direction for the translation was incorrect. Presumably these	
				candidates were assuming that the more usual request of the	
				transformations needed to transform $y = \sin\theta$ to the more	
				complicated curve was involved.	
				Success in part (ii)(b) needed the link between the left-hand side	
				of the equation and the original expression to be noted. Some	
				candidates did proceed easily to the correct final answer but	
				many others did not see a need to use the obtuse angle 180° -	
				$\frac{3}{1}$ sin ⁻¹ $\frac{3}{7}$ to find a positive value for β Many others could make no	
				relevant progress and attempts tended to consist of lengthy and	
				involved trigonometric expansions.	
		Total	12		
		Total	12		
			12		Note that both parts are to be answered
5	i		B1		Note that both parts are to be answered without calculator so sufficient detail is
5	i	State or imply $ an \theta = \frac{1}{4}$			Note that both parts are to be answered without calculator so sufficient detail is needed
5	i	State or imply $ an heta = rac{1}{4}$			without calculator so sufficient detail is
5	i		B1		without calculator so sufficient detail is
5	i	State or imply $ an \theta = \frac{1}{4}$ $ \underline{ an \theta + 1}$			without calculator so sufficient detail is
5	i	State or imply $ an heta = rac{1}{4}$	B1		without calculator so sufficient detail is
5	i	State or imply $ an \theta = \frac{1}{4}$ $ \underline{ an \theta + 1}$	B1	<u>5</u> / <u>3</u>	without calculator so sufficient detail is
5	i	State or imply $ an \theta = \frac{1}{4}$ $ \underline{ an \theta + 1}$	B1	But not unsimplified equiv (such as $\frac{5}{4} / \frac{3}{4}$	without calculator so sufficient detail is
5	i	State or imply $ an \theta = \frac{1}{4}$ $ \underline{ an \theta + 1}$	B1		without calculator so sufficient detail is
5	i	State or imply $ an heta = rac{1}{4}$	B1	But not unsimplified equiv (such as $\frac{5}{4} / \frac{3}{4!}$ Examiner's Comments	without calculator so sufficient detail is
5	i	State or imply $ an heta = rac{1}{4}$	B1		without calculator so sufficient detail is
5	i	State or imply $ an \theta = \frac{1}{4}$ $ \underline{ an \theta + 1}$	B1	Examiner's Comments	without calculator so sufficient detail is
5	i	State or imply $ an heta = rac{1}{4}$	B1	Examiner's Comments The instruction 'Without using a calculator' in this question meant	without calculator so sufficient detail is
5	i	State or imply $ an heta = rac{1}{4}$	B1	Examiner's Comments The instruction 'Without using a calculator' in this question meant that candidates were required to supply sufficient detail and this	without calculator so sufficient detail is
5	i	State or imply $ an heta = rac{1}{4}$	B1	Examiner's Comments The instruction 'Without using a calculator' in this question meant that candidates were required to supply sufficient detail and this was the case with the vast majority of candidates; there were just	without calculator so sufficient detail is

© OCR 2017. Page 13 of 31 PhysicsAndMathsTutor.com

	ii	Attempt use of correct relevant identity or of right-angled triangle	M1	apparently did not know that $\tan 45^\circ$ is 1 and occasionally the Trisolution $\tan(\theta+45^\circ)=\tan\theta+1=\frac{5}{4}$ was noted. $\csc\theta=\frac{1}{\sin\theta}$ with attempt at $\sin\theta$, or use of Pythagoras' theorem in right-angled triangle Final answer $\pm\sqrt{17}$ earns A0	gonometric Identities and Equations
	ii	Obtain √17	A1	Part (ii) presented a few more problems and some candidates wrote down various identities, but not the crucial one, in the hope of finding a way to the value of cosec θ . Many candidates made efficient and concise use of the identity $\csc^2\theta \equiv 1 + \cot^2\theta$; another popular approach was to use a right-angled triangle to find the length of the hypotenuse. Many candidates gave their final answer as $\pm \sqrt{17}$ and this did not earn the second mark; they were expected to note that θ was an acute angle.	
		Total	5		
6	i	Use $\sin 2\theta = 2\sin\theta\cos\theta$	B1		
	i	State $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ or $\tan \theta + \frac{1}{\tan \theta}$	B1	Perhaps as part of expression	
	i	Simplify using correct identities	M1		Note that going directly from $2\sin^2\theta + 2\cos^2\theta$ to 2 is M0 but $2(\sin^2\theta + \cos^2\theta)$ to 2 is M1A1
	i	Obtain 2 correctly	A1	AG; necessary detail needed	

© OCR 2017. Page 14 of 31 PhysicsAndMathsTutor.com

i	a Obtain expression involving at least one of $\sin \frac{1}{6} \pi$ and $\sin \frac{1}{4} \pi$	M1	Further Trigonometric Identities and Equations
i	Obtain 2 2	A1	Or equiv involving cosecant
i	Obtain $4 + 2\sqrt{2}$ or exact equiv	A1	Answer only is 0/3
i	b Use $\sin 4\theta = 2\sin 2\theta \cos 2\theta$ Obtain $\cos 2\theta = \frac{1}{4}$ or $\cos^2 \theta = \frac{5}{8}$ or	B1	
i	$\sin^2\theta = \frac{3}{8}$	B1	
i	Obtain 0.659 or 0.66	B1	Or greater accuracy; and no others between 0 and $\frac{1}{2}\pi$, allow 0.21 π but not 0.659 π , answer only earns 0/3
i	$k_1 \sin^4 heta imes rac{k_2}{\sin^3 heta}$	M1	
			A0 if 2 2 $(-2\sin^2\theta)^2$ involved in simplification
			Examiner's Comments
i	$4\sin^4 heta imesrac{8}{\sin^3 heta}$ and hence $32\sin heta$	A1	This final question contained some searching requests and it was pleasing to note that 14% of the candidates recorded all of the 12 marks. The majority of the candidates answered part (i) well, providing sufficient detail to convince the examiners. The three requests in part (ii) made more demands of candidates. The use of 'Hence' indicated to candidates that the identity proved in part (i) should be used but many candidates appeared to ignore this. Not only was 'Hence' suggesting the approach to take in each case but it was also indicating that the use of the identity would be the best way to tackle the request. Many candidates made no attempt to use the identity in part (a) and 58% of the candidates scored no marks. Others however used

			the identity and readily appreciated that the value was $\frac{2}{\sin\frac{1}{6}\pi} + \frac{2}{\sin\frac{1}{4}\pi}_{\text{and}}$ the required exact value followed. $\text{Some candidates answered part (b) in just a few lines, rewriting the equation as 2\sin2\theta\cos2\theta (\tan\theta+\cot\theta)=1 and using the identity to reach the equation 4\cos2\theta=1 followed by the value of \theta. Many candidates though clearly believed that the equation could not be solved the equation was expressed in terms of \sin\theta or \cos\theta, involved attempts followed using various identities and sometimes the attempt was concluded correctly. \text{Only 21\% of the candidates answered part (c) correctly but it was pleasing to note neat and elegant solutions such as (1-\cos2\theta)^2 \frac{1}{(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3}=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}{2}\theta)^3=4\sin\theta\sin\theta(\tan\frac{1}{2}\theta+\cot\frac{1}$	gonometric Identities and Equations
			θ + $\cot \frac{1}{2}\theta$] ³ and the use of the identity reduces this to $4 \sin \theta \times 2^3$ and therefore $32\sin \theta$.	
	Total	12		
7	Use identity $\sec^2 A = 1 + \tan^2 A$	B1		
	Attempt solution of three-term quadratic equation to obtain two values of $\tan A$	M1	Implied if correct values obtained; allow M1 for incorrect factorisation provided expansion would give correct first and third terms; allow M1 for incorrect use of formula if only one error present	
	Obtain $\tan A = -3$ and $\tan A = 4$	A1	And no others; implied by $A = \tan^{-1} -3$ and $\tan^{-1} 4$;	A = -3, 4 is A0 here unless subsequent work shows values used correctly
	Use correct identities to produce equation in tan B only	M1	Equation might be $t^0 = 27 \dots$	or $f + f - 27f - 27 = 0$
	State $tan B = 3$	A1	And no others	

Substitute at least one pair of non-zero numerical values into $ an A - an B$	M1	Further Trigonometric Identities and Equati
$\overline{1 + \tan A \tan B}$	IVII	Must be the correct identity
Obtain one of $\frac{1}{13}$ and $\frac{3}{4}$ or exact equiv	A1	
		And no others
		Examiner's Comments
		This unstructured question on trigonometry did present more
		problems to candidates. A fewstruggled to make any significant
		progress but the vast majority did realise that they needed to find
		values of tan A and tan B. The first equation was the more familiar
		one and most candidates applied an identity and found the two
		possible values of tan A without difficulty. A few candidates went
		further than necessary and found possible values of the angle A.
		The second equation was of a less familiar type and many
		candidates embarked on involvedand lengthy attempts. The
Obtain the other exact value or equiv	A1	appearance of sec ² B and cosec ² B prompted their replacement by
Obtain the other exact value of equiv		1 + $\tan^2 B$ and 1 + $\cot^2 B$ respectively. In some cases this led to the correct equation $\tan^5 B + \tan^3 B - 27 \tan^2 B - 27 = 0$ but
		solution of this equation was beyond most candidates. Those
		candidates who paused to consider the nature of the second
		equation in the question observed that replacement of sec ² B by
		$\overline{\cos^2 B}$ and of $\csc^2 B$ by $\overline{\sin^2 B}$ offered a more
		promising approach. Many were able to reach $tan^3B = 27$ easily
		but there were also puzzling cases where an obvious next step
		was not taken; for example, candidates reaching the equation
		$\tan^2 B = \frac{27}{100}$
		$\tan^{-}B = \frac{1}{\tan B}$
		tan D
		sometimes decided to express all in terms of $\sin B$ and $\cos B$.

				There were errors in reaching the value of B too with values B too with values B and B and B and B and B and B are increased as B and B are increased as B . The identity for B is given in the B is giv
		Total	8	
8	i	Use at least one addition formula accurately	M1	Without substituting values for cos30°, etc. yet
	i	Obtain cos0	A1	AG; necessary detail needed
	i	State $\cos 4\theta = 2\cos^2 2\theta - 1$	B1	Or $\cos 4\theta = \cos^2 2\theta - \sin^2 2\theta$
	i	Attempt correct use of relevant formulae to express in terms of cosθ	M1	Or in terms of $cos\theta$ and $sin\theta$
	i	Obtain correct unsimplified expression in terms of cosθ only	A1	e.g. $2(2c^2 - 1)^2 - 1 + 4(2c^2 - 1)$
	i	Simplify to confirm 8cos ⁴ θ – 3	A1	AG; necessary detail needed
				Examiner's Comments
	i			This question contained challenges for even the best candidates and only 13% of the candidates recorded all thirteen marks. The first two marks of part (i) were obtained by most but convincing and concise responses to the subsequent proof were not so common. Many candidates did not take the trouble to present solutions in such a way that they were easy to follow, or indeed to read. On some scripts, it was often difficult for examiners to decide whether candidates had written cos20 or cos²0. In other cases, parts of the proof were scattered around the page and efforts to reassemble the parts did not always succeed. The main difficulty was dealing with cos40. Some decided that, since cos20

			= $\cos^2\theta$ – $\sin^2\theta$, $\cos 4\theta$ must be $\cos^4\theta$ – $\sin^4\theta$. Many did state $\cos^4\theta$ = $\cos^22\theta$ – $\sin^22\theta$ but use of this did lead to involved expressions involving $\cos\theta$ and $\sin\theta$; considerable care was then needed to reach a successful conclusion. The best solutions usually involved use of $\cos 4\theta$ = $2\cos^22\theta$ – 1 and $\cos 2\theta$ = $2\cos^2\theta$ – 1.	gonometric Identities and Equations
ij	(a) Obtain 12	B1		
ii	Substitute 0 for cosθ in correct expression	M1	No need to specify greatest and least	
ii	Obtain $\frac{1}{4}$	A1		
			Examiner's Comments	
			Part (ii)(a) proved demanding for many; about as many earned no marks as earned all three. A few carelessly considered	
			$\frac{1}{8\cos^4\theta - 3}$ For those	
ii			dealing with the correct	
			$\frac{1}{8\cos^4\theta + 4}$ the value $\frac{1}{12}$	
			usually appeared but many candidates mistakenly decided that the other requested value would result from cos49 being -1.	
ii	(b) State or imply $8\cos^4(3\alpha) - 3 = 1$	B1	Or $2\cos^2 6\alpha + 4\cos 6\alpha - 2 = 0$	
ii	Attempt correct method to obtain at least one value of $\boldsymbol{\alpha}$	M1	Allow for equation of form $\cos^4(3\alpha) = k$ where $0 < k < 1$ or for three-term quadratic equation in $\cos 6\alpha$	
ii	Obtain 10.9	A1	Or greater accuracy 10.921	Answer(s) only: 0/4
ii	Obtain 49.1	A1	Or greater accuracy 49.078; and no others between 0 and 60	

© OCR 2017. Page 19 of 31 PhysicsAndMathsTutor.com

	"			Examiner's Comments Many candidates saw no connection by (ii)(b) and the results in part (i). Their att afresh and it was very seldom that any made. Some made a connection with and formed the equation $\cos 12\alpha + 4c\alpha$ to deal with this; for those who did, repletter sometimes meant that the solution completed correctly. The other success recognising the link with the main result attempt to solve the corresponding equation $\cos^4(3\alpha) = \frac{1}{2}$ frequent as candidates omitted the value corrects $\cos(3\alpha) = -\sqrt[4]{\frac{1}{2}}$	between the equation in part tempts involved starting y significant progress was the first result from part (i) $\cos 6\alpha = 1$. Not all knew how placement of 6α by another on of the equation was not seful approach involved all from part (i). However, the ently led to only one value of	gonometric Identities and Equations
		Total	13			
9	а	$\frac{2\tan\theta}{1+\tan^2\theta} = \frac{2\sin\theta}{\cos\theta} \div \sec^2\theta$ $= \frac{2\sin\theta\cos^2\theta}{\cos\theta}$ $= 2\sin\theta\cos\theta = 2\theta$	B1(AO2.1) M1(AO2.1) A1(AO2.2a)	terms of $\sin\theta$ and $\cot\theta$ $\cot\theta$	M0 for attempts to rearrange to solve an equation	
	b	DR $\sin 2\theta = 3\cos 2\theta$ $\cos \tan 2\theta = 3$	B1(AO2.2a) M1(AO2.1)	Use the result of (a) or otherwise achieve an equation in tan only	OR B1 for squaring both sides and	

		$\theta = \frac{1}{2} \tan^{-1} 3_{\text{oe}}$ 0.625, 2.20	A1(AO1.1)	Use correct order of operations to solve, must be shown Both values required. May be given to 3 s.f. or better (0.624523, 2.195319), or both solutions in exact form $\frac{1}{2} \tan^{-1} 3$, $\frac{1}{2} \tan^{-1} 3 + \frac{1}{2} \pi$	Further Tr achieving an equation in either sin or cos only For answers alone award no marks	gonometric Identities and Equations
		Total	6			
10	а	State $R = 5$ Attempt to find value of α	B1(AO1.1) M1(AO1.1a) A1(AO1.1)	May be implied by correct value or its		
		Obtain 36.9	[3]	complement Accept $\tan^{-1}\left(\frac{3}{4}\right)$		
	b	Minimum temperature is 15 °C	B1ft(AO3.4)	ft 20 – R		

© OCR 2017. Page 21 of 31 PhysicsAndMathsTutor.com

				Further Trigonometric Identities and Equations
		Minimum occurs when $15t - \alpha = 180$	M1(AO3.1a)	
	С	<i>t</i> = 14.5	A1ft(AO1.1) A1(AO3.2a)	ft (a + 180) ÷15
		Time is 2:27 am	[3]	oe, e.g. 0227
		Total	7	
11	а	$\cos x = \pm 0.5$ $x = 60^{\circ}$ or 120°	B1(AO 1.1a) B1(AO 1.1) B1(AO 1.1)	
	b	$\frac{\cos^2 \theta + \sin \theta \cos \theta - \cos^2 \theta + \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$ $= \frac{2 \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$ $= \frac{\sin 2\theta}{\cos 2\theta}$ $= \tan 2\theta AG$	M1(AO 3.1a) A1(AO 2.1) A1(AO 2.1)	M1 for either numerator or denominator correct

© OCR 2017. Page 22 of 31 PhysicsAndMathsTutor.com

						Further Tri	gonometric Identities and Equations
		$\tan 2\theta = 1$	M1(AO 3.1a)				
		2 <i>θ</i> = 45°	A1(AO 1.1a)				
b	(<i>b</i>)	or 2θ = 225° or 405° or 585°	A1(AO 1.1)	At least two			
		θ = 22.5° or 112.5°	A1(AO 1.1) A1(AO 3.2a)	Both			
		or 202.5° or 292.5°	[5]	Both			
	Total		11				
			B1	Identity must be used r	not merely quoted		
			M1	formula, M1 earned if s formula correct; for inc with no working, check	substitution of their value orrect equation and two c that values are correct	es into correct values produced	
i	Obtain a	t least tan $ heta$ = -4 from the correct equation	A1	involved; so $\frac{2}{3}$ and -4 is A1, -4 or $\frac{3}{2}$ and -4 is A0; $y = -4$ when clear that angles	only is A1, $\frac{2}{3}$ only is allow solution such as y is $\tan \theta$; ignore subse		
	b	Total Use iden Attempt:	$2\theta = 45^{\circ}$ (b) or $2\theta = 225^{\circ}$ or 405° or 585° $\theta = 22.5^{\circ}$ or 112.5° or 202.5° or 292.5°	$2\theta = 45^\circ$ $2\theta = 45^\circ$ $(b) \text{or } 2\theta = 225^\circ \text{ or } 405^\circ \text{ or } 585^\circ$ $\theta = 22.5^\circ \text{ or } 112.5^\circ$ $\text{or } 202.5^\circ \text{ or } 292.5^\circ$ [5] Total 11 $\text{Use identity } \sec^2\theta = 1 + \tan^2\theta$ $\text{Attempt solution of } 3 \text{-term quadratic equation in } \tan\theta$	$2\theta = 45^{\circ}$ $2\theta = 45^{\circ}$ $(b) \text{or } 2\theta = 225^{\circ} \text{ or } 405^{\circ} \text{ or } 585^{\circ}$ $\theta = 22.5^{\circ} \text{ or } 112.5^{\circ}$ $\text{or } 202.5^{\circ} \text{ or } 292.5^{\circ}$ $\text{for } 112.5^{\circ}$ $\text{or } 202.5^{\circ} \text{ or } 292.5^{\circ}$ $\text{for } 112.5^{\circ}$ $\text{or } 202.5^{\circ} \text{ or } 292.5^{\circ}$ $\text{for } 112.5^{\circ}$ $\text{or } 202.5^{\circ} \text{ or } 292.5^{\circ}$ $\text{for } 112.5^{\circ}$ $\text{for } 112.5^{$	$2\theta = 45^{\circ}$ $2\theta = 45^{\circ}$ $\theta = 22.5^{\circ} \text{ or } 405^{\circ} \text{ or } 585^{\circ}$ $\theta = 22.5^{\circ} \text{ or } 112.5^{\circ}$ $0 \text{ or } 202.5^{\circ} \text{ or } 292.5^{\circ}$ 11 11 11 11 11 11 11 1	3,1a A1(AO 1.1) A1 (AO 1.

© OCR 2017. Page 23 of 31 PhysicsAndMathsTutor.com

		[3]	Further Trigor. The vast majority of candidates had no difficulty in using the appropriate identity and solving the equation to find the two possible values of tanθ. Candidates correctly reaching the values 2 -4 and 3 earned all three marks at this stage; the penalty for proceeding with the incorrect value would follow in part (ii). In fact many candidates were unable immediately to choose the correct value and had to go further to find angles before making a choice. Others explicitly rejected -4, stating that the value is not between -1 and +1 or using their calculator to find the angle -76° and	onometric Identities and Equations
			observing that this is not in the required range. Using any value from (1)	
ii	a Attempt substitution into $\frac{2 \tan \theta}{1 - \tan^2 \theta}$ Use -4 to obtain $\frac{8}{15}$ and no other value	M1 A1 [2]	Or exact equiv; full details to be shown; indication of use of calculator is M0; finding tan 2θ for both angles is M1A0; answer $\frac{8}{15}$ with no working is M0A0; final answer $\frac{-8}{-15}$ s A0 Examiner's Comments For part (ii)(a), the vast majority of candidates knew the correct identity to use but only about half substituted the correct value of $\frac{2}{3}$, earned only the method mark.	
iii	State or imply $\cot(2\theta + 135^\circ)$ is b 1 ÷ $\tan(2\theta + 135^\circ)$ Attempt substitution of their value from (a) into	B1 M1 A1	Either at beginning of solution or towards the end Allow with $tan135^{\circ}$ still present Or exact equiv; full details to be shown; allow	

		$\frac{1-\tan 2\theta \tan 135^{\circ}}{\tan 2\theta + \tan 135^{\circ}} \text{ or into } \frac{\tan 2\theta + \tan 135^{\circ}}{1-\tan 2\theta \tan 135^{\circ}}$ Obtain $\frac{-\frac{23}{7}}{7}$ and no other value	[3]	Further Trigonometric Identities and Equations Examiner's Comments Candidates did not fare so well with part (ii)(b) and statements such as $\cot(2\theta+135)=\frac{1}{\tan}\left(2\theta+135\right)$ and $\cot(2\theta+135)=\cot2\theta+\cot135 \text{ were occasionally seen.}$ Rather than using their value of $\tan2\theta \text{ from part (ii)(a), some}$ candidates endeavoured to set up an identity for $\cot(2\theta+135^\circ) \text{ in terms of } \tan\theta$. Candidates were required to supply sufficient detail in their solutions to indicate that calculators had not been used and most did indeed do so. Just over a third of the candidates succeeded in reaching the correct value of $\frac{-23}{7} \cdot \cot\theta = -23$
		Total	8	
13	а	$\tan \frac{\pi}{12} = \tan(\frac{\pi}{3} - \frac{\pi}{4})$ $= \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \text{oe}$ $= \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$ $= \frac{4 - 2\sqrt{3}}{2}$	M1(AO 3.1a) A1(AO 1.1a) M1(AO 1.2)	Any correct use of double angle formula Any correct expression for <i>t</i> (or correct QE) Attempts rationalising (or solve their QE) This form seen (or both roots) and

	$=2-\sqrt{3} (AG)$		Correct answer alone Further Trigonometric Identities and Equations
b	$\frac{\sqrt{3}}{2}\sin 3A - \frac{1}{2}\cos 3A = \frac{1}{4}$ $\sin(3A - 30^{\circ}) = \frac{1}{4}$ $3A - 30^{\circ} = 14.5$ $A = 14.8^{\circ}$ or $3A - 30^{\circ} = 165.5$	M1(AO 1.1a) A1(AO 3.1a) M1(AO 1.1) A1(AO 1.1)	Use of sin ⁻¹ both sides
	A = 65.2 (1 dp)	M1(AO 2.4) M1(AO 3.1a)	
	or $3A - 30^{\circ} = (14.5 + 360)^{\circ}$ $A = 134.8^{\circ}$	A1f(AO 2.1)	ft their 14.8° + 120°
	Total	11	

© OCR 2017. Page 26 of 31 PhysicsAndMathsTutor.com

			Fruther Tolland	atria Identities and Favetiens
			Correct use of compound angle formulae at least once	etric Identities and Equations
	$\sin\left(2\theta + \frac{\pi}{4}\right) = 3\cos\left(2\theta + \frac{\pi}{4}\right)$ $\sin 2\theta \cos\frac{\pi}{4} + \sin\frac{\pi}{4}\cos 2\theta = 3$ $\cos 2\theta \cos\frac{\pi}{4} - 3\sin 2\theta \sin\frac{\pi}{4}$	M1(AO 1.1)E	Not from incorrect working AG – at least one step of intermediate working seen	
14	$2\frac{\sin 2\theta}{\cos 2\theta} = 1 \Longrightarrow \tan 2\theta = \frac{1}{2}$ $\tan \left(2\theta + \frac{\pi}{4}\right) = 3$ ALT:	A1(AO 1.1)E A1(AO 2.2a)E	Correct use of compound angle formula for tan and removal of	
	$\frac{\tan 2\theta + 1}{1 - \tan 2\theta} = 3 \Rightarrow \tan 2\theta + 1 = 3(1 - \tan 2\theta)$	B1 M1	fraction	
	$\tan 2\theta = \frac{1}{2}$	A1	$\frac{\text{Examiner's Comments}}{\text{Candidates were equally split in how to tackle this part.}}$ $\text{Approximately half expanding the brackets (using the correct compound-angle formulae) while the other}$ $\text{half re-wrote as} \text{tan} \left(2\theta + \frac{\pi}{4}\right) = 3 \text{ before}$	
			expanding. Both approaches proved equally successful in obtaining the expected result.	

		Further Trigonometric Identities and Equations
		Double angle formula for tan 20
		Rearranges correctly to form 3-term quadratic in tan Allow one sign
$\tan 2\theta = \frac{1}{2} \Rightarrow \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{1}{2}$	M1*(AO 3.1a)E	BC – One correct slip in formula exact value
$1 - \tan^2 \theta$ $\tan^2 \theta + 4 \tan \theta - 1 = 0$	Dep*M1(AO 1.1)E	Explicit rejection and reason for rejection
b	A1(AO 1.1)C	This value only
$\tan \theta = -2 \pm \sqrt{5}$ $-2 + \sqrt{5} > 0 \tan \theta = -2 + \sqrt{5}$ gives acute angle	A1(AO	
$-2+\sqrt{5}>0$ so $\tan\theta=-2+\sqrt{5}$ gives acute angle		Examiner's Comments Many candidates did not read the question carefully and began
$\therefore \tan \theta = -2 - \sqrt{5}$	A1(AO 2.2a)A	writing $2\theta = \tan^{-1}\left(\frac{1}{2}\right) \Rightarrow \theta = \dots$ even
	[5]	though the question specifically asked for the exact value of $\tan \theta$.
		Of those candidates that used the correct double–angle formula for $\tan 2\theta$ many derived the correct three–term quadratic in $\tan \theta$
		tan $\theta = -2 \pm \sqrt{5}$. However, a significant
		proportion ended their response here and did not go on to

				determine the exact value of $\tan\theta$ given that θ is an obtuse angle. A full solution needed the explicit realisation that since $-2+\sqrt{5}>0, \tan\theta=-2+\sqrt{5}_{\text{would not}}$ give an obtuse angle and therefore the only valid solution was $\tan\theta=-2-\sqrt{5}$
		Total	8	
15	а	$ \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta} $ $ = \frac{\frac{2 \tan \theta}{1 - \tan^2 \theta} + \tan \theta}{1 - \frac{2 \tan \theta}{1 - \tan^2 \theta} \tan \theta} $	B1 (AO 2.1) B1(AO 2.1)	Correct expression Correct expression in terms of $\tan \theta$
		$= \frac{2 \tan \theta + \tan \theta (1 - \tan^2 \theta)}{(1 - \tan^2 \theta) - 2 \tan^2 \theta}$	M1(AO 2.1) A1(AO 2.1)	
		$= \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} $ AG	[4]	Complete proof to show given identity convincingly As far as clearing fractions
		$3 \times \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} = \tan \theta + k$	M1 (AO 3.1a)	Equate and attempt to rearrange
	b	$9 \tan \theta - 3 \tan^3 \theta = (\tan \theta + k)(1 - 3 \tan^2 \theta)$ $9 \tan \theta - 3 \tan^3 \theta = \tan \theta - 3 \tan^3 \theta + k - 3k \tan^2 \theta$ $3k \tan^2 \theta + 8 \tan \theta - k = 0$		

		T		
		$b^2 - 4ac = 64 + 12k^2$	A1(AO 1.1) A1FT(AO 3.1a)	Correct 3 term quadratic Correct
		$k^2 \ge 0$, so $64 + 12k^2 > 0$ so equation will always have two distinct roots	M1(AO 2.2a)	discriminant FT their 3 term Could be within quadratic in tan θ Consider sign of correct discriminant and hence number Could be within quadratic formula Discriminant Discriminant must
		$\tan\theta = c$ will always give one value for θ , which will be between 0° and 90° for $c > 0$ and between 90° and 180° if $c < 0$ so two distinct roots for $\tan\theta$ will always give two values for θ between 0° and 180°	A1(AO 2.4) [5]	of roots Conclude by justifying two values for <i>θ</i>
		Total	9	
16	а	DR $\cos A + \sin A \tan A$ $= \cos A + \sin A \frac{\sin A}{\cos A}$ $= \frac{\cos^2 A + \sin^2 A}{\cos A}$ $= \frac{1}{\cos A} \qquad (= \sec A AG)$	M1 (AO 1.1a) M1 (AO 1.1) A1 (AO 2.2a) [3]	or $\cos^{2}A + \sin^{2}A = 1$ $\Rightarrow \cos A + \frac{\sin^{2}A}{\cos A} = \frac{1}{\cos A}$ $\Rightarrow \cos A + \sin A \frac{\sin A}{\cos A} = \sec A$ $(\Rightarrow \cos A + \sin A \tan A = \sec A)$ AG

t	သ	tan $2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ $\frac{2 \tan \theta}{1 - \tan^2 \theta} = 3 \tan \theta$ $2 \tan \theta = 3 \tan \theta - 3 \tan^3 \theta$ $\tan^2 \theta = \frac{1}{3} \text{oe} \text{(or } \tan \theta = 0\text{)}$ $\tan \theta = \pm \frac{1}{\sqrt{3}}$ $\theta = 0^\circ \text{ or } 30^\circ$ or 150° or 180°	M1 (AO 1.2) M1 (AO 3.1a) A1 (AO 1.1) A1 (AO 1.1) A1 (AO 1.1) [7]	soi Allow without $\tan \theta = 0$ for this A1 Allow $\tan \theta = \frac{1}{\sqrt{3}}$ for this A1 Both	rgonometric Identities and Equations
		Total	10		